Ways to help your child to learn Times Tables

All children learn in different ways. Therefore some of the tips below will help your child more than others. Pick and choose from this selection: what works for one child will not necessarily work for their brother or sister, so try lots of different ideas.

Learn only a little at a time. If you are starting on a new table don't attempt to master the whole thing at once; start with $0 \times 6,1 \times 6,2 \times 6$ on one day, then add further numbers in the sequence when they are ready for it.

\times																		0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0																	
1	0	1	2	3	4	5	6	7	8	9	10	11	12																	
2	0	2	4	6	8	10	12	14	16	18	20	22	24																	
3	0	3	6	9	12	15	18	21	24	27	30	33	36																	
4	0	4	8	12	16	20	24	28	32	36	40	44	48																	
5	0	5	10	15	20	25	30	35	40	45	50	55	60																	
6	0	6	12	18	24	30	36	42	48	54	60	66	72																	
7	0	7	14	21	28	35	42	49	56	63	70	77	84																	
8	0	8	16	24	32	40	48	56	64	72	80	88	96																	
9	0	9	18	27	36	45	54	63	72	81	90	99	108																	
10	0	10	20	30	40	50	60	70	80	90	100	110	120																	
11	0	11	22	33	44	55	66	77	88	99	110	121	132																	
12	0	12	24	36	48	60	72	84	96	108	120	132	144																	

Constant revision of all of the tables is important; not just those learned recently.

Multiplication tables are just a quick way of doing a very long addition sum.
Eg: Instead of calculating $4+4+4+4=16$ it is quicker/more efficient to do $4 \times 4=16$

It is very important that the children understand how the tables are compiled: this will make learning easier as then they will not be just learning `gobbledygook' by rote.
$1 \times 5=5$
This means there is 1 'lot of' 5
$2 \times 5=10$
This means that there are 2 'lots of 5 ' i.e. 5 plus another $5(5+5=10)$
$3 \times 5=15$
3 lots of 5
$5+5+5=15$ etc.

At home count in 2 s :
 5 lots of $10=50$ or $5 \times 10=50$

This knowledge is especially helpful for the higher number tables.
If a child, does not know what 7×7 is, they do not have to start right at the very beginning of the $7 x$ table but can leap in half way:
$5 \times 7=7 \times 5=35$
$6 \times 7=35+7(6$ lots of 7$)=42$
$7 \times 7=42+7(7$ lots of 7$)=49$

It may help to demonstrate this point using concrete apparatus such as staws, plastic cups or even Smarties! A little reward goes a very long way and the 'lesson' is more likely to be remembered if they child finds it fun!

Change this into real life situations:

- "If there are four legs on every chair, how many legs are there altogether on all of the chairs around this table?"

- "If we order three pints of milk from the milkman every day, how much milk do we drink in a week?"

Odd and Even Numbers

(An even number is in the $2 x$ table and ends in $0,2,4,6$ or 8 .)

The following rules always apply:
$2 \times 4=8$
$2 \times 3=6$
$3 \times 2=6$
$3 \times 5=15$
$E X E=E \quad(E$ is Even O is Odd)
$\mathrm{ExO}=\mathrm{E}$
$O \times E=E$
$\mathrm{O} \times \mathrm{O}=\mathrm{O}$
Therefore, the only time you get an odd answer is when two odd numbers are multiplied together (one easy way of checking an answer). Encourage your child to investigate this rule to check if they agree.

Multiplication is Commutative (don't worry about the big word, it just means you can do the calculation in any order)

$2 \times 4=4 \times 2$
This means 2×4 gives the same answer as 4×2
This can be demonstrated very easily by drawing a rectangle 4 squares by 2 :
Here you have 2 rows of 4 squares but it is exactly the same if you turn it around so that there are 4 rows of 2 squares. (Squared paper is available from the Homework Support Desk.)

Again use the Smarties (or plastic cups), set out in 4 rows of 2 or 2 rows of 4 , you still have the same number altogether.

This helps children as when asked 3×8 they may not know the 8 times table, but can answer if they know the 3 times table. So for every times table fact they learn, they also know a second.

Use mnemonics to aid the memory (again, don't worry about the big word)
I ate and ate 'till I was sick on the floor:
Wakey, wakey, rise and shine:
Make up some of your own.
$7 \times 8=56 \quad 56=7 \times 8$
8 eights are 64!
Seven 7's are 49

Look for number patterns in the tables

Ox: Think of 'empty pockets'. Ask your child how many pockets he has in the clothes he is wearing at the moment. If there are three pockets, all with nothing in them, then he has nothing. It doesn't matter how many pockets he has, if they are all empty, there will be nothing. $3 \times 0=0$ etc.

2x: 246810
then the pattern is repeated with the last digit in each answer

12141618202224
3x: $\quad 3691215$
O E O E O (O is Odd $\quad E$ is even)
$4 x$: All of these answers are double the answers in the $2 x$ table
$5 x$: Any odd number times 5 , ends in a 5 . Any even number tunes 5 ends in a 0

6x: These answers are just double those in the $3 x$ table

8x: $\quad 81624324048566472808896$

9x: See below for 'Using Fingers'

All of the answers add up to 9
$18 \quad 1+8=9$
$27 \quad 2+7=9$
$363+6=9$ etc

This even works with the really high multiples of 9:
$43 \times 9=4324+3+2=9 \quad$ Get your child to try this for themselves.

10x: All numbers end in a zero! (Please note we are not `adding a zero'. What is actually happening is that the digits which are being multiplied move place one column to the left, to make them ten times bigger: this can be demonstrated with digit cards which you can easily make at home try writing digits on Post-It notes).
TUHTU
835
88350

Now there isn't a digit in the UNITS column, so we have to put a zero in there to hold the place and show the value.
The little ones might even enjoy doing this with bigger numbers as it makes them feel very good when they can multiply very big numbers.
$11 x: \quad$ Both digits are the same (for answers < 100)

12x: If you've learnt all the other tables - there actually should only be one thing to learn by this stage: $12 \times 12=144$

Oral Work (saying it out loud)

- Count forwards and backwards in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}$, etc. You might do this whilst walking to school or driving in the car.
- Put one more finger up every time you move onto the next number in the sequence if this will help the child to remember which number they are up to.
- Chant the tables in the old fashioned way (see the script for `making your own tape'). Or sing the tables Mathletics has times tables tunes to play/sing along to.
- Working on only one table at a time - ask in different order i.e. $3 \times 5=$?, $7 \times 5=$?
- Give them the answer, how many 5 s make this? How many 3 s make 18 ?

Using fingers to calculate times tables

1. Label the fingers as follows:

- Mark both thumbs with the number 6
- Mark both index fingers with the number 7
- Mark both middle fingers with the number 8
- Mark both fourth fingers with the number 9
- Mark both little fingers with the number 10

2. Hold the hands with the palms facing you, thumbs pointing upwards. The tips of the two fingers whose numbers are to be multiplied are brought together so that they are just touching (i.e. 8×7)
3. The two touching fingers and all the fingers above them are counted - in this case there are 5 ; 3 on one hand and two on the other. This gives you the total number of 'TENS' in the answer (i.e. 5 TENS = 50)
4. Now there are some fingers left over, beneath the touching pair - two on one hand and three on the other. These two numbers are now multiplied together and the product, 6 , is added tothe TENS that have already been calculated $8 \times 7=5$ tens $+6=56$

The $9 \times$ Table

Lay both hands flat, palms down, on the table.
 Number the fingers, from left to right, 1-10. If you want 3×9, wiggle the third finger and then curl it under.
On the left of this finger there are 2 fingers (2 TENS).
On the right of this finger there are 7 fingers (7 UNITS)
$9 \times 3=27$

\mathbf{X}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4	5	6	7	8	9	10	11	12
$\mathbf{2}$	0	2	4	6	8	10	12	14	16	18	20	22	24
$\mathbf{3}$	0	3	6	9	12	15	18	21	24	27	30	33	36
$\mathbf{4}$	0	4	8	12	16	20	24	28	32	36	40	44	48
$\mathbf{5}$	0	5	10	15	20	25	30	35	40	45	50	55	60
$\mathbf{6}$	0	6	12	18	24	30	36	42	48	54	60	66	72
$\mathbf{7}$	0	7	14	21	28	35	42	49	56	63	70	77	84
$\mathbf{8}$	0	8	16	24	32	40	48	56	64	72	80	88	96
$\mathbf{9}$	0	9	18	27	36	45	54	63	72	81	90	99	108
$\mathbf{1 0}$	0	10	20	30	40	50	60	70	80	90	100	110	120
$\mathbf{1 1}$	0	11	22	33	44	55	66	77	88	99	110	121	132
$\mathbf{1 2}$	0	12	24	36	48	60	72	84	96	108	120	132	144

As the tables are learned, they can be coloured or highlighted both horizontally and vertically. You can use this opportunity again to emphasise that $3 \times 6=6 \times 3$ so therefore as well as learning all of the $3 x$ table, part of the $6 x$ table has also been leaned so this can be coloured in as well! Therefore, by the time all the tables up to and including the $5 x$ have been learnt, there is actually only one quarter of this grid left to commit to memory.

Record your own tape

It is far more effective if a child listens to his/her own voice recorded (rather than someone like Carol Vorderman etc). This could be on a tape, CD, mobile phone, MP3 there are many ways to record now. It is better if the children follow a 'script' when making the tape. The children should say the first bit into the microphone then leave a short pause before reading the answer: thus, when the tape is being played back., they have chance to say the answer themselves before checking that it is correct with the answer given by the tape.

Here are scripts they could use (the ------ means pause):

One5 is--5	One2is---2	One 10is--10
Two 5s are--10	Two2s are---4	Two 10s are . . 20
Three 5s are -- 15	Three 2s are -- 6	Three 10s are - - 30
Four 5s are---20	Four 2s are---8	Four 10s are - . 40
Five 5s are--25	Five 2 s are--10	Five 10 s are---50
Six 5s are-30.	Six 2 s are---12.	Six 10s are--60
Seven 5s are-35	Seven 2 s are--14	Seven los are--7 70
Eight 5s ore--40	Eight 25 are.- 16	Eight 10 s are---80
Nine 5s are--45	Nine 2s are--- 18	Nine 10s are - . 90
Tents 5 s are --50	Tents 2s are--20	Ten 10s are - - 100
Eleven 5s are - - 55	Eleven 2s are - 22	Eleven 10s are - - 110
Twelve 5s are - - 60	Twelve 2s are - - 24	Twelve 10s are - - 120
One 3 is ---3	One 4 is ---4	One 6 is .-. 6
Two3sare--6	Two 4sare---8	Two6safe--- 12
Three 3s are---9	Three 4 s ore-- 12	Three 6 s are-18
Four 3 s are--12	Four $4 s$ are--16	Four 6s are--24
Five 3 s are---15	Five 4 s are- -20	Five 6s are--30
Six 3s are--18	Six 4 s are---24	Six 6 s are---36
Seven 3 s are ---21	Seven 4 are ---28	Seven 6s are--42
Eight 3s are .- 24	Eight $4 s$ are . - 32	Eight 6 s are .- 48
Nine 3s are--27	Nine 49 are -- 36	Nine 6s are--54
Ten 3s are ---30	Ten $4 s$ are---40	Ten 6s are---60
Eleven 3 s are ---33	Eleven 4 s are -- - 44	Eleven 6 s are ---66
Twelve 3s are - 30 '	Twelve $4 s$ are--48	Twelve 6 s are - - 72
One 7 is-.-7	One 8 is---8	One 9 is---9
Two 7s are--14	Two 8s are--16	Two 9s are--18
Three 7s are--21	Three 8s are--24	Thee 9s are---27
Four 7s are --28	Four 5s ore - . 32	Four 9 s are-- 36
Five 7s are - .- 35	Five 5 s are - - 40	Five 9s are -.. 45
Six 7s are- 42	Six 8 s are - 48	Six 9s are --54
Seven 7s are - - 49	Seven 8 s are -- 56	Seven 9s are--66
Eight 7s are - - 56	Eight 8 s are -- 64	Eight 9s are - - 72
Nine 7s are---63	Nine 8s are---72	Nine 9s are - - 81
Ten7sare--70	Ten Bs are---80	Ten 9s are--90.
Eleven 7 s are -- 77	Eleven 8s are - - 88	Eleven 9s are -- 99
Twelve 7s are - 84	Twelve Bs are - - 96	Twelve 9s are - 108

Double it

A child who can double, can multiply by 2,4 and 8 straight away.

Practise doubling. Encourage children to write down the 2, 4 and 8 times tables and see the patterns. Eg: $2 \times 2=4 \quad 2 \times 4=8 \quad 2 \times 8=16$ (the fours are double the twos and the eights are double the fours).

Then they can investigate the 3 s and 6 s in the same way. Once you know the 3 s , you double to find the 6 s .

Halve it

If children know their 10s they may like to think of halving to find 5 s . $8 \times 10=80$ Therefore $8 \times 5=40$ (5 is half of 10 so the answer will be half)

Home-made Mathematical Games

The following games can be adapted for the times tables and any other uses you can think of:

- Buy a set of blank business cards from any good stationer (or cut up larger pieces of card).
- Snip one corner of each card so that you can tell which way up they should be when the cards are face down.
- Write a variety of times tables questions and answers the cards (just one thing on each card: For example on 8 different cards you may write
$3 \times 5=$ (on the other side) 15
$4 \times 5=$ (on the other side) 20 etc
These can be then used to play:
- Snap
- Pairs/ Pelmanism
- Happy Families (but it isn't easy to see the cards when they are held in your hand)

Pelmanism

Shuffle the cards and arrange them in a neat order on the table, face down.
The players take it in turn to reverse any two cards; the cards must be left on the table face Upwards, so that everybody gets a good chance to look at them.
If the two cards are equivalent the player gets to keep the pair and has another go.
If the two cards are not a pair they are turned over once more and left on the table.
The game continues until all the cards have been claimed.
If this game is used for learning the times tables write 'questions' on half of the cards and 'answers' on the other half.

Snap

Again, half of the cards should be the `question' (2×5) and the other half of the cards should contain the answer (10).
Shuffle the cards and divide them equally between two players.
The players keep their cards in a pile, face down.
One person turns over a card, then the other person turns over a card next to it so the two cards are close to each other. If the cards are equivalent, the last person to have tamed over a card keeps all the cards in the two upturned piles. He then leads off on the next round.

Bingo

Each player selects five `answers' from one of the times tables. Roll two die, add the dots together. Multiply that total by whichever table it is you are doing e.g. you are learning the \(6 x\) table five and two is rolled on the dice five and two is 7 \(7 \times 6=42\) Any player who has 42 on their `Bingo card' can cross it off. The next player rolls the dice.

Remember regular practise for just 3 to 5 minutes every day is far better than practising for a longer time, but less often.

Children really can learn a times table by heart in a week, so go on have a go!

Useful websites:
http://www.mathletics.co.uk/
http://www.sumdog.com/
http://www.bbc.co.uk/schools/websites/4 11/site/numeracy.shtml
http://www.mathisfun.com/
http://mathschallenge.net/
http://www.primarygames.co.uk/
http://www.whizz.com/
http://www.teachingtables.co.uk/

Visit the Homework Support Desk after school (every two weeks) for more ideas.

By Mrs Hackett - AHT Maths Leader

